Single-ion nuclear clock for metrology at the 19th decimal place.
نویسندگان
چکیده
The 7.6(5) eV nuclear magnetic-dipole transition in a single 229Th3+ ion may provide the foundation for an optical clock of superb accuracy. A virtual clock transition composed of stretched states within the 5F(5/2) electronic ground level of both nuclear ground and isomeric manifolds is proposed. It is shown to offer unprecedented systematic shift suppression, allowing for clock performance with a total fractional inaccuracy approaching 1×10(-19).
منابع مشابه
Ion Exchange Behavior of Zeolites A and P Synthesized Using Natural Clinoptilolite
The main goal of this study is to investigate the capability of zeolites A and P synthesized from Iranian natural clinoptilolite for uranium uptak. The removal of uranium(VI) from aqueous solution via ion exchange by zeolites in a single component system with various contact times, temperatures and initial concentrations of uranium(VI) was investigated. The experimental results we...
متن کاملDesign and Implementation of Field Programmable Gate Array Based Baseband Processor for Passive Radio Frequency Identification Tag (TECHNICAL NOTE)
In this paper, an Ultra High Frequency (UHF) base band processor for a passive tag is presented. It proposes a Radio Frequency Identification (RFID) tag digital base band architecture which is compatible with the EPC C C2/ISO18000-6B protocol. Several design approaches such as clock gating technique, clock strobe design and clock management are used. In order to reduce the area Decimal Matrix C...
متن کاملOptical atomic coherence at the 1-second time scale.
Highest-resolution laser spectroscopy has generally been limited to single trapped ion systems because of the rapid decoherence that plagues neutral atom ensembles. Precision spectroscopy of ultracold neutral atoms confined in a trapping potential now shows superior optical coherence without any deleterious effects from motional degrees of freedom, revealing optical resonance linewidths at the ...
متن کاملAn optical clock based on a single trapped 199Hg+ ion.
Microwave atomic clocks have been the de facto standards for precision time and frequency metrology over the past 50 years, finding widespread use in basic scientific studies, communications, and navigation. However, with its higher operating frequency, an atomic clock based on an optical transition can be much more stable. We demonstrate an all-optical atomic clock referenced to the 1.064-peta...
متن کاملQuantum Algorithmic Readout in Multi-Ion Clocks.
Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 108 12 شماره
صفحات -
تاریخ انتشار 2012